A large deviation principle for 2D stochastic Navier–Stokes equation
نویسندگان
چکیده
منابع مشابه
A large deviation principle for Dirichlet posteriors
Let Xk be a sequence of independent and identically distributed random variables taking values in a compact metric space Ω, and consider the problem of estimating the law of X1 in a Bayesian framework. A conjugate family of priors for non-parametric Bayesian inference is the Dirichlet process priors popularized by Ferguson. We prove that if the prior distribution is Dirichlet, then the sequence...
متن کاملA large deviation principle for Dirichlet posteriorsA
Let X k be a sequence of independent and identically distributed random variables taking values in a compact metric space , and consider the problem of estimating the law of X 1 in a Bayesian framework. A conjugate family of priors for non-parametric Bayesian inference is the Dirichlet process priors popularized by Ferguson. We prove that if the prior distribution is Dirichlet, then the sequenc...
متن کاملStochastic Sub - Additivity Approach to the Conditional Large Deviation Principle
University of Chicago Given two Polish spaces AX and AY, let ρ AX × AY → d be a bounded measurable function. Let X = Xn n ≥ 1 and Y = Yn n ≥ 1 be two independent stationary processes on AX and A ∞ Y , respectively. The article studies the large deviation principle (LDP) for n−1 ∑n k=1 ρ Xk Yk , conditional on X. Based on a stochastic version of approximate subadditivity, it is shown that if Y s...
متن کاملLarge deviation principle for stochastic integrals and stochastic differential equations driven by infinite dimensional semimartingales
Let H be a separable Banach space. We considered the sequence of stochastic integrals {Xn− · Yn} where {Yn} is a sequence of infinite dimesnional H semimartingales and Xn are H valued cadlag processes. Assuming that {(Xn, Yn)} satisfies large deviation principle, a uniform exponential tightness condition is described under which large deviation principle holds for {(Xn, Yn, Xn− · Yn)}. When H i...
متن کاملLarge deviation principle for enhanced Gaussian processes
We study large deviation principles for Gaussian processes lifted to the free nilpotent group of step N . We apply this to a large class of Gaussian processes lifted to geometric rough paths. A large deviation principle for enhanced (fractional) Brownian motion, in Hölderor modulus topology, appears as special case. © 2007 Elsevier Masson SAS. All rights reserved. Résumé Nous etudions les princ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stochastic Processes and their Applications
سال: 2007
ISSN: 0304-4149
DOI: 10.1016/j.spa.2006.11.001